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ABSTRACT 

It is shown that any F-space having I p as a continuous linear image for some 
0 < p < 1 must contain proper closed subspaces which are dense in the weak 
topolgy. In particular, when 0 < p < 1, such subspaces are present in l p, and 
the same is shown to hold in certain F-spaces of analytic functions which 
nevertheless have enough continuous linear functionals to separate points. 

1. Introduction. We give some examples of  F-spaces (complete linear metric 

spaces) which, despite having a separating family of continuous linear functicnals 

contain proper, closed subspaces which are dense in the weak topology. It follows 

from the Hahn Banach theorem that these spaces are not locally convex; but 

it is not known if every non-locally convex F-space must contain a proper, closed, 

weakly dense (PCWD) subspace (see [4, sec. 7]). 

This phenomenon seems first to have occurred in the literature in the work 

of Duren, Romberg and Shields [4], who discovered that the Hardy spaces 

H p (0 < p < 1), which have separating dual spaces, contain PCWD subspaces. 

Earlier Peck [9] found closed subspaces in I p (0 < p < 1) which were not weakly 

closed, however his subspaces were not weakly dense. 

In Section 2 of this paper we obtain some results about F-spaces which show, 

in particular, that I p contains PCWD subspaces when 0 < p < 1. In Sections 

3 and 4 we apply our results to certain spaces of analytic functions. Specifically 

we consider the spaces E(p ,  z) (0 < p < 1, 0 < zoo < ) of entire functions f of ex- 

ponential type z with 

Ilill = f- oo llo<)l" < 
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and the spaces A ~ (0 < p < 1) of functions f analytic in the open unit disc with 

(1.2) I ls l l  = _[[ I s ( : ) l " X x d y  < oo. 
Iz l<l  

We show that these spaces are complete, have separating families of continuous 

linear functionals, and contain PCWD subspaces. As a by-product of our method 

we are able to determine the modulus of convexity (see Section 2) of each of these 

spaces. Our method also applies to other spaces, including H p (0 < p < 1), where 

it produces PCWD subspaces in a manner quite different from that of [4], and 

provides a different proof of Landsberg's theorem that H p has modulus of con- 

vexity p [6, Satz 3]. 

2. Results on F-spaces,  with application to l p (0 < p < 1). 

In this section we show that any F-space which can be mapped onto 

I p (0 < p < 1) by a continuous linear transformation contains PCWD subspacs 

and has modulus of  convexity at most p.  In particular when 0 < p < 1, I p 

has PCWD subspaces. 

Recall that if 0 < p < 1, a p-norm (norm if p = 1) on a linear space is a non- 

negative, subadditive functional I I  II vanishing only at the origin such that 

I[ [I -- I p II x II 

for each vector x and scalar ~. A p-normed space is a linear topological space 

whose topology is induced by a p-norm. A subset S of a linear space is called 

p-convex (convex if  p = 1) if c~x + fly e S whenever x, y e S and ~, fl are non- 

negative numbers with ~P+ t iP=  1. Note that every p-convex set is r-convex 

for 0 < r < p,  and that the unit ball of a p-normed space is p-convex. If  E is 

a linear topological space, the supremum of the set of p for which E has a loca 1 

base of  p-convex sets will be called the modulus of convexity of  E ,  and denoted 

by k(E). This supremum need not be attained; for example there are non-locally 

convex spaces with modulus of convexity 1 (see [10] for an example). Every 

p-normed space has modulus of convexity > p. 

We begin with a well known basic result. 

PROPOSITION 1. An F-space contains PCWD subspaces if and only if it has as 

a continuous linear image an infinite dimensional F-space with trivial dual 

(i.e. no nontrivial continuous linear functional). 
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Proof. Suppose E is an F space, and K is a PCWD subspace. Then E/K is 

an F-space [5, p. 167] which is a continuous linear image of E under the quotient 

map. We claim that K has infinite codimension in E .  Suppose not. Let H be any 

algebraic complement of K in E .  Then H is a closed, finite dimensional subspace, 

[5, pp. 159-160] whose relative topology is that of Euclidean space. Thus H 

supports a nontrivial continuous linear functional, which may be extended to all 

of  E by defining it to be 0 on K .  There is, then, a continuous nontrivial linear 

functional on E which vanishes on K;  contradicting the fact that K is weakly 

dense. Thus K has infinite codinaension, so E/K is infinite dimensional. 

Suppose # is a nontrivial continuous linear functional on E/K. Then the 

equation 

(2.1) ~(f)  = /~(f+ K) ( f  in E) 

defines a continuous nontrivial linear functional ~ on E which vanishes on K, 

contrary to the fact that K is weakly dense. Thus ElK can have no nontrivial 

continuous linear functional. 

Conversely, suppose E and F are F-spaces, and F is infinite dimensional with 

trivial dual. Let Tbe  a continuous linear map taking E onto F .  Clearly K = ker T 

is a proper, closed subspace of E. We claim it is weakly dense. ]f not, then there 

is a nontrivial continuous linear functional ~ on E which vanishes on K .  

Equation (2.1) then defines a nontrivial continuous linear functional p on 

E/K. However the equation 

U(f + K) = Tf  ( f  in E) 

defines an algebraic isomorphism of E/K onto F .  If Q:E-*E/K denotes the 

quotient map, then U ° Q = T is continuous, hence U is continuous. It follows 

from the interior mapping principle [5, p. 170] that U is a homeomorphism. 

Thus E/K is linearly homeomorphic with F, and can therefore have no nontrivial 

continuous linear functional. This is a contradiction, therefore K must be weakly 

dense. /// 

In particular we can show that l ~ (0 < p <  1) contains a PCWD subspace by 

mapping it onto L p = LP([0, 1]), which has a trivial dual (see [5, p. 162], for 

example). The existence of such a mapping follows from the next theorem, which 

is well known for p = 1 [5, p. 283]. 

PROPOSITION 2. Every complete, separable p-normed space (0 < p < 1) is a 

continuous linear image of l p. 
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Proof. Let S = {en: n =>10) be a countable dense subset of U =  { f i n E :  Ilfll =<-1). 
If  x = (4s) belongs to if, and n,k  > O, then 

n+k  n+k 

II Y ¢Jejll <= Y" I Jl" 
j =n j =n 

The sequence ( • ~ • o~iWi, n > 0) is therefore Cauchy in E,  so it converges to an 

element ~ ° { j e j  of E. Define the map T:  l " ~  E by 

oo 

Tx  = ~ ~jex (x = (~j) in if).  
0 

If  x belongs to if, then [] Tx II z II x II, so z is a continuous linear map. We 

show that T(ff) = E.  Suppose f is in E and IIf [] < 1. Since S is dense in U, 

there exists an index n(0) such that 

I I f -  e,<o)II 2-P" 

Thus f -  e,~o) belongs to ½U, which contains ½S as a dense subset. Consequently 

there exists an index n(1) such that 

II f -  e,,<o, - ½e,,<,, II --< 4 -P. 

Continuing in this manner we obtain a sequence n(k) (k = 0,1,2,-. .) of indices 

such that 

k 

I l f -  2-Je°,x, II =< 2-(k+t)P 
j = 0 

(k = 0,1,2, . . . )" Let x be the sequence having 2 - k i n  position n(k), and 0 

elsewhere. Then x belongs to if, and Tx  = f .  /// 

COROLLARY 1. Any F-space having I p (0 < p < 1) as a continuous linear image 

contains proper, closed, weakly dense subspaces. In particular, I p itself con- 

tains such subspaces. 

Proof. If  follows from Proposition 2 that L p is a continuous linear image 

of ft. If  there is a continuous linear map taking the F-space E onto I p, then 

there is one taking E onto L p, and the result follows from Proposition 1. /// 

It is well known that k(L p) = p if 0 < p < 1. The next proposition provides 

another proof of this, along with the fact that L p (0 < p < 1) has no nontrivial 

continuous linear functional. 

PROPOSITION 3 (cf. [2, V.7.37]). I f  p < r < 1, then the r-convex hull of the 

L p unit ball is all of L p. 



Vol. 7, 19 69  SUBSPACES IN NON LOCALLY CONVEX F-SPACES 373 

Proof. The r-convex hull of the L p unit ball is the set of elements ~'oqxi, 

where ]lx~ll < 1, ~, > 0 and ~ 0 ~  = 1 (n = 1,2, . . . ) .  S u p p o se f  belongs to L p. 

Choose n > 0 such that II f [I p/,-1 < 1, and partition the unit interval into dis- 

joint subintervals I (1) , I (2) , . . . , I (n ) ,  such that 

f,<., Ifl "dx _-Ilfll/n. 
Let fs coincide with nl/ ' f  on I ( j ) ,  and vanish on the rest of  the unit interval 

( j  = 1 ,2 , - . . ,n ) .  Then f =  n - l l ' ( f  1 + f 2  + "'" + fn ) ,  and [IfJlr = n " - '  Ilfll--- 1 

(j = 1 ,2 , . . . ,n ) .  ill 

COROLLARY 1. L p (0 < p < 1) has no nontrivial continuous linear functional. 

Proof. Every continuous linear functional on LPis bounded on the unit ball, 

hence on the convex hull of  the unit ball, which is the whole space. Therefore 

the functional vanishes identically. /// 

COROLLARY 2. I f  0 < p < 1, then k(L p) = p.  

Proof. For  p < r < 1, it follows from Proposition 3 that the only nonempty 

r-convex open set is L p itself. Thus k(L)  < p.  On the other hand, every p-normed 

space has modulus of convexity > p; and the result follows. //i 

PROPOSITION 4. Let E and F be F-spaces. I f  F is a continuous linear image 

of E, then k(E) < k(F).  

Proof. Suppose T is a continuous linear map of E onto F .  Suppose 

k(F) < r < 1. It is enough to show that E does not have a local base of  r-convex 

sets. I f  {U} is such a base, then it follows from the continuity of T and the 

interior mapping principle that {T(U)} is a local base in F consisting of r-convex 

sets. Thus k (F )>  p, contradicting our original assumption. /// 

COROLLARY. For 0 < p < 1, the modulus of convexity of 1 p is p. 

In the following theorem, most of which has already been proven, we summarize 

those results which will be needed later on. 

THEOREM 1. Suppose E is an F-space having 1 p as a continuous linear image, 

for some 0 < p < 1. Then E has proper, closed, weakly dense subspaces, and 

k(E) < p.  I f  E is p-normed, then k(E) = p.  

Proof. That E has PCWD subspaces is Corollary 1 of Proposition 2. That 
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k(E) < p follows from Proposition 4 and its corollary. If  E is p-normed, then 

k(E) >= p. 111 

3. The spaces E(p,z) (0 < p <  1, 0 < z < ao). 

Recall that E(p,z) denotes the space of entire functions of exponential type z 

whose restrictions to the real axis belong to LP( - oo, oo). More specifically, f 

belongs to E(p,z) if  and only if for each e > 0, 

(3.1) max If(z) l=0(exp(~ + a)r) as r ~ ~ ,  
iz I =r 

and 

f [ I s (  )1 (3.2) Itsll; = x "dx < ~.  
• O0  

~f 1 _< p < oo, then IIs II = IIs I1,, is a norm; while i f  0 < p < 1, then I1S II -- I1S II; 
is a p-norm. It is well known (see Proposition 5 and its p roof ) tha t  E(p, z) 

(0 < p < ~ )  can be considered as a closed subspace of LP(- o% ~)  and (3.1) 

can be replaced by 

(3.3) max If(z)} = 0(exp(zr)) as r ~  oo. 
Izl =, 

In particular the spaces E(p,z) are complete. In this section we show that when 

0 < p < 1 they have separating families of continuous linear functionals, con- 

tain PCWD subspaces, and have modulus of convexity p. 

The complex function theory that we use can be found, for the most part, in 

Boas [1, sec. 6.7]. Of crucial importance is the following inequality of Plancherel 

and P61ya [1, p. 98]. 

THEOREM A. If  f belongs to E(p, z) (0 < p < oo), then 

f~o~o[f(x + iy)lPdx < tl f II~,exp(pz I y I). 

PROPOSITION 5. The spaces E(p, z) (0 < p < co) are complete, and the evalu- 

ation functionals {2z: z complex} defined by 

2z(f)  = f ( z )  

form a separating family of continuous linear functionals. 

Proof. I f f  belongs to E(p,z), then I f [  Pis subharmonic, so for each z ,  
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If('>l" < ~ - '  f f 
I~-%<1 

r fL < rc -I  [f(u + io)[Pdudo. 
dy--I 

Using Theorem A to estimate the inner integral, we obtain 

= f y + l  If(z)l'< -- '  Ilslt; . - ,  exp(p~ivi)dv 

< c.  II s I1." exp(pz I Y 1)' 

where C = 7z-l/%xpz. Thus we have the growth estimate 

(3.4) If(z) l  __< cllfll.exp(~ly[), 
which implies (3.3). It is clear from (3.4) that each evaluation functional ~= is 

continuous on E(p,z), so {2~: z complex} is a separating family of continuous 

linear functionals on E(p,z). 

Another consequence of (3.4) is that the topology of E(p,z) is stronger than 

the topology of uniform convergence on compact subsets of the plane. Thus if 

(f,) is a sequence of functions in E(p,z) which converges in the L p norm to a 

function f ,  then (f,) is Cauchy uniformly on compact subsets of the plane, so it 

converges uniformly on compact subsets to an entire function g. Since (f,) has 

a subsequence which converges to f pointwise a.e., it follows that f = g a.e., 

hence E(p,z) may be regarded as a closed subspace of LP( - 0% oo). Thus E(p,z) 

is complete. /// 

THEOREM 2. I f  0 < p <  1, then E(p,z) has modulus of concavity p, and 

contains proper, closed, weakly dense subspaces. 

Proof. Let x, = nnfl (n = 0, 1,2, . . .) ,  where -eft is an integer which exceeds 

l ip.  We will show that the map T defined by 

Tf  = (f(x.): n > O) 

is a continuous linear transformation of E(p,z) onto I v. In view of Theorem 1, 

the proof will then be complete. Suppose f belongs to E(p,~). Since [f[p is 

subharmonic, integration over the disc D, = {z: [ z - x ,  [ > 7cfl/2} yields 
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=l l (x : ) l "  ~ 4(,</lr: f f,> li(~)l'dxdy 
n 

tit/ill fx°+itp/2 
< 4(~/l)-2 J-it/in Jx.-it/i/2 If(x + iY)lPdxdy" 

Since the intervals ( x . -  ~/l/2, x.-1-~/l/2) are disjoint, both sides ofthisinequal-  

ty can be summed on n to yield 

= Is(x.)l p =< 4(./7) -2 IS(x+ iY)[Pdxdy. 
n =0 ,d -it/ill  oo 

Now apply Theorem A to the inner integral on the right to get  

oo 

x ls(=.)l"---- cll/ll;,, 
n=O 

where C is independent o f f  (cf. [1, p. 101]). Thus T is a continuous linear map 

taking E(p,z) into F .  We show that Tis  onto. Suppose (~,) belongs to I p. Let 

[ s i n / l - ' ( ~  - x . )  l '/i 
g.(z)= [ U~-~-75 ] 

(n = 0 ,1 ,2 , . . . ) .  We will show that gneE(p,z )  (n = 0,1 ,2 , . . . )  and that the 

series 

oo 

(3.6) Y_, ~,g,(z) 
n = O  

converges in E(p,z) to a function f in E(p,z) .  Since g,(x,,) = 0 when n ~ m 

and = 1 when n = m, it will then follow from the continuity of Tthat  T f  = (~,), 

which will complete the proof. 

Since z/l is an integer, it is clear that each g, is an entire function of exponential 

type z. Let m = max{[z -Xs inz l :  Izl < 1}. Then for n = 0 ,1 ,2 , . . . ,  

f°° I sin/l-'(/-x")t" 

= sin/1-1xfl-lx ! i'/it'dx 

f; =< 2m "/ip + 2/l ~/ip x-~/iNx 

Since z/lp > 1, the last integral converges, so there exists C > 0 such that 

II g.ll; < c (n = 0,1,2, . . .) .  ~ u s  gnee(p,~) for each n, and it follows from the 

uniform bound on the norms that the series (3.6) converges in E(p,~). //] 
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4. The spaces AP(0 < p < 1). 

In this section we show that the spaces A p (0 < p < 1) of analytic functions in 

LP([z [ <  1) have modulus of  concavity p, and contain proper, closed, weakly 

dense subspaces. 

I f f  belongs to A p, it follows from the fact that [f [" is subharmonic in the open 

unit disc that whenever [z [ < 1, 

' _-__ ff IS(w l"dudo Z l ls l l -  
I~-z l<l -I , I  

Thus the point evaluations {2z: I z 1< 1} form a separating family of continuous 

linear functionals, and the topology on A p is stronger than the topology of  uni- 

form convergence on compact subsets of the unit disc. It follows as in the previous 

section that A p is complete. 

We will require two lemmas, whose proofs will not be given here. 

LEMMA A I-8, Theorem 2]. Suppose 0 < I zo I < [ zl I < "'" ~ 1, and for some 

0 < C < I ,  

(4.1) 1 c¢1 -Iz.I)  

Then there exists 6 > 0 such that 

(n = 0 ,1 ,2 , . . . ) .  

(4.2) FI 
0 _~j < oo,j@n 

for n = 0,1,2, . . . .  

Z n - -  Z j  
> 6  

LEMMA B [7, pp. 93-96]. I f  ~ > 1, then 

j ' ~ = [ -  re'°[ = o((1 - 1 i~O r)  1-~) 

as r ~ l - .  

THEOREM 3. I f  0 < p < 1, then A v has modulus of concavity p, and contains 

proper, closed, weakly dense subspaces. 

Proof. Let (z,) be a sequence of  complex numbers satisfying the hypotheses 

of  Lemma A. We claim that the mapping T defined by 
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T f =  (f(z°)(1 -I~°1)~/,: n __> O) 

is a continuous linear transformation taking A p onto l p. For convenience, write 

r, = [z, I' I f f  is in A p, and D~ is the open disc of radius (r,+ ~ - r,)/2 centered at 

z , ,  then we have from the subharmonicity of i f  [ p that 

(4.3) n(r.+,- ,'°)~ If(z.)l" <4 f [  I f ( ' ) l '  dua,,. 
• I U D  n 

From (4.1) it follows that r ,+t - r~ > (1 - C)(1 - r,). Substitute this inequality 

into (4.3), and sum both sides of the resulting inequality on n.  Since the discs 

D, are disjoint (n = 0,1,2, . . . ) ,  it follows that 

o0 

z If(z.)l.(1-1=.1)2 ~ 411fll/n(1-c)2. 
n = 0  

T is therefore a continuous linear mapping of A p into P.  

We show that Tis onto. If  (~,) is in I p, form the series 

oo 

(4.4) E ~,b,(z)b,(z,)-l gn(Z), 
n = 0  

where 

and 

bn(z) = H z j  z j  -- z 

g . ( z )  = (1 - e . z ) - e ( 1  - z . i 2 )  "-2/",  

where /7 > 2[p. We claim that the series (4.4) converges in A p. Once this has 

been established, i f f  denotes the limit function, then f e A  p, and it follows from 

the continuity of T that Tf  = (~,). 

Let f ,  denote the nth partial sum of (4.4) (n = 0,1,2, . . . ) .  It follows from 

Lemma A that Ib.(zn) l > ~ > 0, and from standard function theory ([11, page 

302-1, for example) that IbXz)l < 1 whenever Iz I < 1. Thus whenever m > n, 

we have 

ll~-I,.ll-< ~-" ~ I~Jl'll~ll 
j = n + l  
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g straightforward calculation employing Lernma B shows that l]gJIl < M  

(j  = 0 ,1 ,2 , . . . )  for some M > 0. Thus (f,)  is a Cauchy sequence, and the series 

(4.4) converges in A p, proving our assertion about T. It follows as before from 

Theorem 1 that A p has PCWD subspaces and modulus of concavity p. ill 

The discussion of A p carries over to the more general classes A (c0 (~ > - 1 )  

of  functions f analytic in the unit disc with 

Ilsll : ff I s ( : ) l " ( 1 - I z l ) : x x a y  < 
l~l~l 

The results are identical, and the proofs are essentially the same. The main dif- 

ference is that in deriving the necessary inequalities, instead of  simply integrating 

over discs, one must integrate over appropriate annuli with respect to a Poisson 

kernel. In addition, certain mixed norm spaces of  functions analytic in the disc 

have been treated by this method [13]. 

Theorem 1 also applies to the spaces H p (0 < p < 1). It  can be shown that 

the result in [12], which shows that the mapping 

f ~ ( f (z , ) (1  - z,) l/p) 

takes H p (1 < p < oo) continuously onto l p if  and only if  (z,) satsfies (4.2), re- 

mains true when 0 < p < 1 (see [3, ch. 9]). Thus H p (0 < p < 1) contains PCWD 

subspaces, and has modulus of  concavity p.  

REFERENCES 

1. R. P. Boas, Entire Functions, Academic Press, New York. 
2. N. Dunford and J. T. Schwartz, Linear Operators, Part I. Wiley (Interscience) New York, 

1958. 
3. P. L. Duren, Theory o f  H p Spaces. To appear. 
4. P. L. Duren, B. W. Romberg and A. L. Shields, Linearfunctionals on H p with 0 < p < 1. 

J. Reine Angew. Math., 238 (1969), 32-60. 
5. G. K6the, Topologische Lineare Rh'ume, Springer-Verlag, Berlin, 1966. 
6. M. Landsberg, Lineare topologische Riiume, die nicht lokalkonvex sind, Math. Z. 65 (1956), 

104-112. 
7. J. E. Littlewood, Lectures on the Theory o f  Functions, Oxford University Press, 

1944. 
8. D. J. Newman, Interpolation in H °°, Trans. Amer. Math. Soc. 92 (1959) 501-507. 
9. N. T. Peck, On non-locally convex spaces, Math. Ann. 161 (1965), 102-115. 
10. S. Rolewicz, On a class o f  linear metric spaces, Bull. Acad. Polon. Sci. C1. III, 5 (1957), 

471-473. 



380 J .H.  SHAPIRO Israel J. Math., 

11. W. Rudin, Real and Complex Analysis., McGraw-Hill, New York, 1966. 
12. H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, 

Amer. J. Math. 83 (1961), 513-532. 
13. J. H. Shapiro, Linear functionals on non locally convex spaces, Thesis, University of 

Michigan, 1969. 

QUEEN'S UNIVERSITY, 
KINGSTON, ONTARIO 


